19 Cognitive Neuroscience and the Structure of the Moral Mind

Joshua Greene

(Note: The data of my own described in the neuroimaging section (excepting those reported in Greene et al., 2001) are either unpublished or published only in conference abstracts. Presumably these results will have been published by the time this book comes out, but if that is not the case then I may not be able to include them in this discussion. Also, some results may change as more data are collected, although the main results are fairly robust at this point.)

If you visit www.dictionary.com and type in the word “innate,” this is what you’ll get:

adj
1. Possessed at birth; inborn.
2. Possessed as an essential characteristic; inherent.
3. Of or produced by the mind rather than learned through experience: an innate knowledge of right and wrong.

Of all the things in the world one might use to illustrate the concept of innateness, this dictionary offers moral knowledge. I find this amusing—the idea that someone who is not exactly sure what “innate” means would benefit from knowing that one of the most complex and least understood of human capacities could plausibly be described as “innate.” And yet this choice, I suspect, is no accident. Our capacity for moral judgment, perhaps more than anything else, strikes people as both within us and external to us, as essentially human and at the same time possessing a mysterious external authority, like the voice of God or Nature calling us at once from within and beyond. But however obvious the reality of an innate capacity for moral judgment may be to theologians, lexicographers, and the like, it is not at all obvious from a scientific point of view, or even clear what such a capacity would amount to.

Any investigation into the possibility of an innate capacity for moral judgment must begin with what is known about moral psychology. Much of what we know comes from the
developmental tradition, beginning with the work of Piaget (Piaget, 1965) and Kohlberg (Kohlberg, 1969). Some of the most compelling work on moral psychology has come from studies of the social behavior of our nearest living relatives, especially the great apes (de Waal, 1996; Flack and de Waal, 2000). Such studies reveal what Flack and de Waal call the "building blocks" of human morality. Likewise, anthropologists (Shweder, et al., 1997), evolutionary psychologists (Cosmides, 1989; Wright, 1994), and evolutionary game theorists (Axelrod, 1984; Sober and Wilson, 1998) have made other important contributions. Perhaps the most striking work of all has come from "Candid Camera"-style studies from within the social psychological tradition that dramatically illustrate the fragility and capriciousness of human morality (Milgram, 1974; Ross and Nisbett, 1991). All of these disciplines, however, treat the mind as a "black box," the operations of which are to be inferred from observable behavior. In contrast, the emerging discipline of cognitive neuroscience aims to go a level deeper, to open the mind’s black box and thus understand its operations in physical terms. The aim of this chapter is to discuss neuro-cognitive work relevant to moral psychology and the proposition that innate factors make important contributions to moral judgment.

1 Lesion data
Imagine the following scenario. A woman is brought to the emergency room after sustaining a severe blow to the head. At first, and much to her doctors' surprise, her neurological function appears to be completely normal. And for the most part it is, but it soon becomes clear that she has acquired a bizarre disability. As a result of her accident, this woman can no longer play basketball. Her tennis game is still top notch, as is her golf swing, and so on. Only her basketball game has been compromised. Could such an accident really happen? Almost certainly not. The way the brain is organized, it is virtually impossible that something like a blow to the head could selectively destroy one's ability to play basketball and nothing else. This is because the neural machinery required to play basketball isn't sitting in one place, like a car's battery (Casebeer and Churchland, 2003). Instead, this machinery is distributed throughout the brain, and its various components are used in the performance of any number of other tasks.

While no one claims to have seen a case of acquired “abasketballia,” there have been cases in which brain damage has appeared to rob individuals of their moral sensibilities in a strikingly selective way. By far, the most celebrated of such cases is that of Phineas Gage (Damasio, 1994), a Nineteenth Century railroad foreman who worked in Vermont. One fateful day, an accidental explosion sent a tamping iron through Gage's cheek and out the top
of his head, destroying much of his medial prefrontal cortex. Gage not only survived the accident; at the time he appeared to have emerged with all of his mental capacities intact. After a two-month recuperation period Gage was pronounced cured, but it was soon apparent that Gage was damaged. Before the accident he was admired by his colleagues for his industriousness and good character. After the accident, he became lawless. He wandered around, making trouble wherever he went, unable to hold down a steady job due to his antisocial behavior. For a long time no one understood why Gage’s lesion had the profound but remarkably selective effect that it had.

More recent cases of patients with similar lesions have shed light on Gage’s injury. Damasio and colleagues (Damasio, 1994) report on a patient named “Elliot” who suffered a brain tumor in roughly the same region that was destroyed in Gage. Like Gage, Elliot has maintained his ability to speak and reason about topics such as politics and economics. He scores above average on standard intelligence tests, including some designed to detect frontal lobe damage, and responds normally to standard tests of personality. However, his behavior, like Gage’s, is not unaffected by his condition. While Elliot did not develop anti-social tendencies to the extent that Gage did, he, too, exhibits certain peculiar deficits, particularly in the social domain. A simple laboratory probe has helped reveal the subtle but dramatic nature of Elliot’s deficits. When shown pictures of gory accidents or people about to drown in floods, Elliot reports having no emotional response but comments that he knows that he used to have strong emotional responses to such things. Intrigued by these reports, Damasio and colleagues employed a series of tests designed to assess the effects of Elliot’s damage on his decision-making skills. They asked him, for example, whether or not he would steal if he needed money and to explain why or why not. His answers were like those of other people, citing the usual reasons for why one shouldn’t commit such crimes. Saver and Damasio followed up this test with a series of five tests of moral/social judgment (Saver and Damasio, 1991). As before, Elliot performed normally or above average in each case. It became clear that Elliot’s explicit knowledge of social and moral conventions was as good or better than most people’s, and yet his personal life, like Gage’s, has deteriorated rapidly as a result of his condition (although he does not seem to mind). Damasio attributes Elliot’s real-life failures not to his inability to reason, but to his inability to integrate emotional responses into his practical judgments. “To know, but not to feel,” says Damasio, is the essence of his predicament.

In a study of Elliot and four other patients with similar damage and deficits, Damasio and his colleagues observed a consistent failure to exhibit normal electrodermal responses (a
standard indication of emotional arousal) when these patients were presented with socially
significant stimuli, though they responded normally to non-social, emotionally arousing
stimuli (Damasio, et al., 1990). A more recent study of patients like Elliot used the "Iowa
gambling task" to study their decision-making skills (Bechara, et al., 1996). In performing
this task, patients like Elliot tend to make unwise, risky choices and fail to have normal
electrodermal responses in anticipation to making those poor choices, suggesting, as
predicted, that their failure to perform well in the gambling task is related to their emotional
deficits. They can't feel their way through the problem.

While the subjects in the above studies exhibit “sociopathic behavior” as a result of
their injuries, they are not “psychopaths.” Most often they themselves, rather than others, are
the victims of their poor decision-making. However, a more recent study (Anderson, et al.,
1999) of two subjects whose ventral, medial, and polar prefrontal cortices were damaged at
an early age (three months and fifteen months) reveals a pattern of behavior that is
characteristically psychopathic: lying, stealing, violence, and lack of remorse after
committing such violations. These developmental patients, unlike Elliot and the like., exhibit
more flagrantly anti-social behavior, presumably because they did not have the advantage of
a lifetime of normal social experience involving normal emotional responses. Both patients
perform fairly well on IQ tests and other standard cognitive measures and perform poorly on
the Iowa gambling task, but unlike adult-onset patients their knowledge of social/moral
norms is deficient. Their moral reasoning appears to be, in the terminology of Kohlberg,
“preconventional,” conducted from an egocentric perspective in which the purpose is to avoid
punishment. Other tests show that they have a limited understanding of the social and
emotional implications of decisions and fail to identify primary issues and generate
appropriate responses to hypothetical social situations. Grattan and Eslinger (Grattan and
Eslinger, 1992) report similar results concerning a different developmental-frontal patient.
Thus, it appears that the brain regions compromised in these patients include structures
crucial not only for online decision-making but also for the acquisition of social knowledge
and dispositions toward normal social behavior.

What can we learn from these damaged individuals? In Gage—the legend if not the
actual patient—we see a striking dissociation between "cognitive" abilities and moral

1 The term "cognitive" has two uses. In some contexts, "cognitive" refers to information processing in a general.
In other contexts, "cognitive" refers to a more narrow range of processes that contrast with affective or
emotional processes. Here, I reluctantly use the term "cognitive" with scare quotes to indicate the second
meaning.
sensibilities. Gage, once an esteemed man of character, is transformed by his accident into a scoundrel, with little to no observable damage to his "intellectual" faculties. A similar story emerges from Elliot's normal performance on questionnaire-type assays of his social/moral decision-making. Intellectually, or "cognitively," Elliot knows the right answers, but his real life social/moral decision-making is lacking. From this pattern of results, one might conclude that Gage, Elliot, and the like have suffered selective blows to their "morality centers." Other results, however, complicate this neat picture. Elliot and similar patients appear to have emotional deficits that are somewhat more general and that adversely affect their decision-making in non-social contexts as well as social ones (e.g., on the gambling task). And to further complicate matters, the developmental patients studied by Anderson and colleagues appear to have some "cognitive" deficits, although these deficits are closely related to social decision-making. Thus, what we observe in these patients is something less than selective damage to these individuals' moral judgment abilities, but something more than a general deficit in "reasoning" or "intelligence" or "judgment." In other words, these data suggest that there are dissociable cognitive systems that contribute asymmetrically to moral judgment but give us little reason to believe that there is a discrete faculty for moral judgment or a "morality module." What these data do suggest is that there is an important dissociation between affective and "cognitive" contributions to social/moral decision-making and that the importance of the affective contributions have been underestimated by those who think of moral judgment primarily as a reasoning process (Haidt, 2001).

2 Anti-social behavior

The studies described above are of patients whose social behavior has been compromised by observable and relatively discrete brain lesions. There are, however, many cases of individuals who lack macroscopic brain damage and who exhibit pathological social behavior. These people fall into two categories: people with anti-social personality disorder (APD) and the subset of these individuals known as psychopaths. Anti-social personality disorder is a catch-all label for whatever it is that causes some people to habitually violate our more serious social norms, typically those that are codified in our legal system (DSM IV, 1994). Psychopaths not only engage in anti-social behavior, but exhibit a pathological degree

2 There is a sizable literature reporting on patients with morally aberrant behavior resulting from frontal damage, and the cases discussed above are not necessarily representative (Grafman et al., 1996). I have chosen to focus on these cases because they involve what I take to be the most interesting dissociations between moral and other capacities.
of callousness, lack of empathy or emotional depth, and lack of genuine remorse for their anti-social actions (Hare, 1991). In more intuitive terms, the difference between APD and psychopathy is something like the difference between a hot-headed barroom brawler and a cold-blooded killer.

Psychopaths appear to be special in a number of ways (Blair, 2001). First, while the behavioral traits that are used to diagnose APD correlate with IQ and socio-economic status, the traits that are distinctive of psychopaths do not (Hare, et al., 1991). Moreover, the behaviors associated with APD tend to decline with age, while the psychopath's distinctive social-emotional dysfunction holds steady (Harpur and Hare, 1994). The roots of psychopathic violence appear to be different from those of similarly violent non-psychopaths. In two ways, at least, their violence appears to be less contingent on environmental input. First, positive parenting strategies appear to influence the behavior of non-psychopaths, whereas psychopaths appear to be impervious in this regard (Wootton, et al., 1997). Second, and probably not incidentally, the violence of psychopaths is more often instrumental rather than impulsive (Blair, 2001).

Experimental studies of psychopaths reveal further, more subtle differences between psychopaths and other individuals with APD. Psychopaths exhibit a lower level of tonic electrodermal activity and show weaker electrodermal responses to emotionally significant stimuli than normal individuals (Hare and Quinn, 1971). A more recent study (Blair, et al., 1997) compares the electrodermal responses of psychopaths to a control group of criminals who, like the psychopathic individuals, were serving life sentences for murder or manslaughter. While the psychopaths resembled the other criminals in their responses to threatening stimuli (e.g. an image of a shark’s open mouth) and neutral stimuli (e.g. an image of a book), they showed significantly reduced electrodermal responses to distress cues (e.g. an image of a crying child’s face) relative to the control criminals, a fact consistent with the observation that psychopathic individuals appear to have a diminished capacity for emotional empathy. An earlier study (Blair, 1995) revealed that psychopaths, unlike ordinary criminals, have an impoverished appreciation of what is known as the "moral"/"conventional" distinction (Turiel, 1983). Most people believe that some social rules may be modified by authority figures while others may not. For example, if the teacher says that it's okay to speak without raising one's hand ("conventional" violation), than it's okay to do so, but if the teacher says that it's okay to hit people ("moral" violation), then it's still not okay to hit people. Psychopaths seem to lack an intuitive understanding of this moral/conventional distinction, and it has been suggested that they perceive all social rules as mere rules (Blair,
Finally, a recent study suggests that psychopathic murderers, unlike other murders and non-murdering psychopaths, fail to have normal negative associations with violence (Gray, et al., 2003).

According to Blair (Blair, et al., 1997), "The clinical and empirical picture of a psychopathic individual is of someone who has some form of emotional deficit." This conclusion is bolstered by the results of a recent neuroimaging study (Kiehl, et al., 2001) in which psychopaths and control criminals processed emotionally salient words. The posterior cingulate gyrus, a region that exhibits increased activity during a variety of emotion-related tasks (Maddock, 1999), was less active in the psychopathic group than in the control subjects. At the same time, other regions were more active in psychopaths during this task, leading Khiel et al. to conclude that the psychopaths were using an alternative cognitive strategy to perform this task.

Thus, so far, a host of signs point to the importance of emotions in moral judgment (Haidt, 2001). In light of this, one might come to the conclusion that a psychopath, with his dearth of morally relevant emotion, is exactly what we're looking for—a human being "with everything—hold the morality." Indeed, Schmitt et al. (Schmitt, et al., 1999) found that psychopaths performed normally on the Iowa gambling task, suggesting that their emotion-based decision-making deficits are not general, but rather related specifically to the social domain. As before, however, the empirical picture is not quite so simple, as psychopaths appear to have other things "held" as well. To begin, two studies, one of adult psychopaths (Mitchell, et al., 2002) and one of children with psychopathic tendencies (Blair, et al., 2001), found that psychopathic individuals do perform poorly on the Iowa gambling task. (These authors attribute the conflicting results to Schmitt et al.'s failure to use the original task directions, which emphasize the strategic nature of the task.) Moreover, there are several indications that psychopaths have deficits that extend well beyond their apparently stunted social-emotional responses. They respond abnormally to a number of "dry" cognitive tasks, both in terms of their behavior (Bernstein, et al., 2000; Lapierre, et al., 1995; Newman, et al., 1997) and their electroencephalographic ("brainwave") responses (Kiehl, et al., 1999a; Kiehl, et al., 1999b; Kiehl, et al., 2000). A common theme among these studies seems to be psychopaths' one-track-mindedness, their inability to inhibit prepotent responses and respond to peripheral cues.

The psychopathy literature sends mixed signals regarding the "impulsivity" of psychopaths. Psychopathic violence is supposed to be "instrumental" rather than "reactive" (Blair, 2001). At the same time, however, some of the evidence described above suggests that
psychopaths have a hard time inhibiting disadvantageous behavior, even during the
performance of "dry" cognitive tasks. Compared to some anti-social individuals, psychopaths
are "cool and collected," but a closer examination reveals that psychopaths have a kind of
impulsivity or one-track-mindedness that subtly distinguishes them from normal individuals.
The results of a neuroimaging study of "predatory" vs. "affective" murderers (Raine, et al.,
1998) gestures toward a synthesis. Raine et al. argue that excessive sub-cortical activity in the
right hemisphere leads to violent impulses, but that "predatory" murderers, who unlike
"affective" murderers exhibit normal levels of prefrontal activity, are better able to control
these impulses. (In a more recent study (Raine, et al., 2000), it was found that a sample of
individuals diagnosed with APD (some of whom, however, may have been psychopaths)
tended on average to have decreased prefrontal gray matter.) However, it's not clear how to
reconcile the claim that "predatory" and "affective" murderers act on the same underlying
impulses with the claim that psychopathic violence is "instrumental" rather than "impulsive."

In sum, psychopaths are not Nature's controlled experiment with amorality. Psychopathy is a complicated syndrome that has subtle and not-so-subtle effects on a wide range of behaviors, including many behaviors that, superficially at least, have nothing to do with morality. At the same time, however, psychopathy appears to be a fairly specific syndrome. Psychopaths are not just people who are unusually anti-social. Using the proper methods, psychopaths are clearly distinguishable from others whose behavior is comparably anti-social, suggesting that the immoral behavior associated with psychopathy stems from the malformation of specific cognitive structures that make important contributions to moral judgment. Moreover, these structures seem to be rather "deep" in the sense that they are not well-defined by the concepts of ordinary experience and, more to the point, ordinary learning. Psychopaths do not appear to be people who have, through some unusual set of experiences, acquired unusual moral beliefs or values. Rather, they appear to have an abnormal but stereotyped cognitive structure that affects a wide range of behaviors, from their willingness to kill to their inability to recall where on a screen a given word has appeared (Bernstein, et al., 2000).

3 Neuroimaging studies of moral judgment and decision-making
Consider the following moral dilemma (the trolley dilemma (Foot, 1978; Thomson, 1986)): A
runaway trolley is headed for five people who will be killed if it proceeds on its present
course. The only way to save these people is to hit a switch that will turn the trolley onto an
alternate set of tracks where it will run over and kill one person instead of five. Is it okay to
turn the trolley in order to save five people at the expense of one? Most people I've tested say that it is, and they tend to do so in a matter of seconds (Greene, et al., 2001).

Now consider a slightly different dilemma (the footbridge dilemma (Thomson, 1986)): A runaway trolley threatens to kill five people as before, but this time you are standing next to a large stranger on a footbridge spanning the tracks, in between the oncoming trolley and the five people. The only way to save the five people is to push this stranger off the bridge and onto the tracks below. He will die as a result, but his body will stop the trolley from reaching the others. Is it okay to save the five people by pushing this stranger to his death? Most people I've tested say that it's not and, once again, they do so rather quickly.

These dilemmas were devised as part of a puzzle for moral philosophers (Foot, 1978; Thomson, 1986) by which the aim is to explain why it's okay to sacrifice one life to save five in the first case but not in the second case. Solving this puzzle has proven very difficult. While many attempts to provide a consistent, principled justification for these two intuitions have been made, the justifications offered are not at all obvious and are generally problematic. The fact that these intuitions are not easily justified gives rise to second puzzle, this time for moral psychologists: How do people know (or "know") to say "yes" to the trolley dilemma and "no" to the footbridge dilemma if there is no obvious, principled justification for doing so? If these conclusions aren't reached on the basis of some readily accessible moral principle, they must be made on the basis of some kind of intuition. But where do these intuitions come from?

To try to answer this question, my colleagues and I conducted an experiment in which subjects responded to these and other moral dilemmas while having their brains scanned (Greene, et al., 2001). We hypothesized that the thought of pushing someone to his death with one's bare hands is more emotionally salient than the thought of bringing about similar consequences by hitting a switch. More generally, we supposed that moral violations of an "up close and personal" nature, as in the footbridge case, are more emotionally salient than moral violations that are more impersonal, as in the trolley case, and that this difference in emotional response explains why people respond so differently to these two cases.

The rationale for this hypothesis is evolutionary. It is very likely that we humans have inherited many of our social instincts from our primate ancestors, among them instincts that rein in the tendencies of individuals to harm one another (de Waal, 1996; Flack and de Waal, 2000). These instincts are emotional, triggered by behaviors and other elicitors that were present in our ancestral environment. This environment did not include opportunities to harm
other individuals using complicated, remote-acting machinery, but it did include opportunities to harm other individuals by pushing them into harms way (e.g. off a cliff or into a river). Thus, one might suppose that the sorts of basic, interpersonal violence that threatened our ancestors back then will "push our buttons" today in a way that peculiarly modern harms do not.

With all of this in mind, we operationalized the "personal"/"impersonal" distinction as follows: A moral violation is personal if it is (a) likely to cause serious bodily harm (b) to a particular person (c) in such a way that the harm does not result from the deflection of an existing threat onto a different party. (Cf. the “no new threat principle” (Thomson, 1986).) A moral violation is impersonal if it fails to meet these criteria. One can think of these criteria for personal harm in terms of ME HURT YOU and as delineating roughly those violations that a chimpanzee can appreciate. Condition (a) (HURT) picks out roughly those harms that a chimp can understand (e.g., assault vs. tax evasion). Condition (b) (YOU) requires that the victim be vivid as an individual. Finally, condition (c) (ME) captures the notion of “agency,” the idea that the action must spring in a vivid way from the agent’s will, must be “authored” rather than merely “edited” by the agent. Pushing someone in front of a trolley meets all three criteria and is therefore "personal," while diverting a trolley involves merely deflecting an existing threat, removing a crucial sense of “agency” and therefore making this violation "impersonal." Other moral dilemmas (about forty in all) were categorized using these criteria as well.

Before turning to the data, the evolutionary rationale for the "personal"/"impersonal" distinction requires a bit more elaboration. Emotional responses may explain why people say "no" to the footbridge dilemma, but why do they say "yes" to the trolley dilemma? Here we must consider what’s happened since we and our closest living relatives parted ways. We, unlike other species, have a well-developed capacity for general-purpose abstract reasoning, a capacity that can be used to think about anything one can name, including moral matters. Thus, one might suppose that when the heavy-duty, social-emotional instincts of our primate ancestors lay dormant, abstract reasoning has an opportunity to dominate. And, more specifically, one might suppose that in response to the trolley case, with its peculiarly modern method of violence, the powerful emotions that might otherwise say "No!" remain quiet, and a faint little “cognitive” voice can be heard: "Isn't it better to save five lives instead of one?"

That's a hypothesis. Is it true? And how can we tell? This hypothesis makes some strong predictions regarding what we should see in the brain scanner while people are responding to personal and impersonal moral dilemmas. The contemplation of personal moral
dilemmas like the footbridge case should produce increased neural activity in brain regions associated with emotional response and social cognition, while the contemplation of impersonal moral dilemmas should produce relatively greater activity in regions associated with "higher cognition." This is exactly what was observed (Greene, et al., 2001). Contemplation of personal moral dilemmas produced relatively greater activity in two emotion-related areas, the posterior cingulate cortex and the medial prefrontal cortex (one of the areas damaged in both Gage (Damasio, et al., 1994) and Elliot (Bechara, et al., 1996)), as well as in the superior temporal sulcus, a region associated with various kinds of social cognition in humans and other primates (Allison et al., 2000). At the same time, contemplation of impersonal moral dilemmas produced relatively greater neural activity in two classically "cognitive" brain areas associated with working memory function in the inferior parietal lobe and the dorsolateral prefrontal cortex.

This hypothesis also makes a prediction regarding people's reaction times. According to the view I've sketched, people tend to have emotional responses to personal moral violations that incline them to judge against performing those actions. That means that someone who judges a moral violation to be appropriate (e.g. someone who says it's okay to push the man off the bridge in the footbridge case) will most likely have to override an emotional response in order to do it. That overriding process will take time, and thus we would expect that "yes" answers will take longer than "no" answers in response to personal moral dilemmas like the footbridge case. At the same time, we have no reason to predict a difference in reaction times between "yes" and "no" answers in response to impersonal moral dilemmas like the trolley case because there is, according to this model, no emotional response, or much less of one, to override in such cases. Here, too, the prediction holds. Trials in which the subject judged in favor of personal moral violations took significantly longer than trials in which the subject judged against them, but there was no comparable reaction time effect observed in response to impersonal moral violations (Greene, et al., 2001).

Further results support this model as well. Above we contrasted the neural effects of contemplating "personal" vs. "impersonal" moral dilemmas. But what should we expect to see if we subdivide the "personal" moral dilemmas into two categories based on difficulty (i.e. based on reaction time)? Consider the following moral dilemma (the crying baby dilemma): It's wartime, and you and some of your fellow villagers are hiding from enemy soldiers in a basement. Your baby starts to cry, and you cover his mouth to block the sound. If you remove your hand your baby will cry, the soldiers will hear, and they will find you and
the others and kill everyone they find, including you and your baby. If you do not remove your hand, your baby will smother to death. Is it okay to smother your baby to death in order to save yourself and the other villagers? This is a very difficult question. Different people give different answers and nearly everyone takes a relatively long time to answer.

Here's a similar dilemma (the infanticide dilemma): You are a teenage girl who has become pregnant. By wearing baggy clothes and putting on weight you have managed to hide your pregnancy. One day during school, you start to go into labor. You rush to the locker room and give birth to the baby alone. You do not feel that you are ready to care for this child. Part of you wants to throw the baby in the garbage and pretend it never existed so that you can move on with your life. Is it okay to throw away your baby in order to move on with your life? For the people in our test sample, at least, this is a very easy question. All of them say that it would be wrong to throw the baby away, and most do so very quickly.

What's going on in these two cases? My colleagues and I hypothesized as follows. In both cases there is a prepotent, negative emotional response to the personal violation in question, killing one's own baby. In the crying baby case, however, there are powerful, countervailing "cognitively" encoded considerations that push one toward smothering the baby. After all, the baby is going to die no matter what, and so you have nothing to lose (in terms of lives lost/saved) and much to gain by smothering it, awful as it is. In some people the emotional response ("Aaaahhhh!!! Don't do it!!!") dominates, and those people say "no." In other people, a "cognitive," cost-benefit analysis ("But you have nothing to gain, and so much to lose...") wins out, and those people say "yes."

What does this model predict that we'll see in the brain scanner when we compare cases like crying baby to cases like infanticide? First, this model supposes that cases like crying baby involve an increased level of "response conflict," i.e. conflict between competing representations for behavioral response. Thus, we should expect that difficult moral dilemmas like crying baby will produce increased activity in a brain region that is associated with response conflict, the anterior cingulate cortex (Botvinick, et al., 2001). Second, according to our model, the crucial difference between cases like crying baby and cases like infanticide is that dilemmas like crying baby involve "cognitive" considerations that compete with the prepotent, negative emotional response. Thus, we should expect to see increased activity in classically "cognitive" brain areas when we compare cases like crying baby to cases like infanticide, even though dilemmas like crying baby are personal moral dilemmas. Finally, according to this model, cases like crying baby involve a competition between "cognitive" and
emotional forces, and so we should expect to see some evidence of the emotional forces making a stand.

All of these predictions held (Greene, et al., 2003). Comparing high reaction time personal moral dilemmas like crying baby to low reaction time personal moral dilemmas like infanticide revealed increased activity in the anterior cingulate (conflict), the anterior dorsolateral prefrontal cortex ("cognitive"), the inferior parietal lobes ("cognitive"), the posterior cingulate (emotional), and the precuneus (a region near the posterior cingulate that has been associated with visual imagery (Fletcher, et al., 1995) and that appears to work in concert with the posterior cingulate).

So far we have talked about neural activity correlated with the type of dilemma under consideration, but what about activity correlated with subjects' behavioral response? Does a brain look different when it's saying "yes" as compared to when it's saying "no" to questions like these? To answer this question we subdivided our dilemma set further by comparing the trials in which the subject says "yes" to difficult personal moral dilemmas like crying baby to trials in which the subject says "no" in response to such cases. Once again, we turn to the model for a prediction. If cases in which people say "no" are cases in which emotion wins, then we would expect to see more activity in the posterior cingulate and possibly the precuneus in those cases. Likewise, if the cases in which people say "yes" are cases in which "cognition" wins, then we would expect to see more activity in the dorsolateral prefrontal cortex and/or parietal lobes in those cases.

The first of these predictions held. That is, the posterior cingulate and precuneus showed relatively greater activity for trials in which the subject said "no." There was no significant effect in keeping with the second prediction for this comparison, although there was a trend in the right direction in the right anterior dorsolateral prefrontal cortex (but see below for a significant effect in this area). Additionally, the insula, a region associated with disgust, anger, and autonomic arousal (Calder, et al., 2001; Critchley, et al., 2000; Damasio, et al., 2000; Phillips, et al., 1997) showed increased activity for "yes" answers, a surprise given our model (according to which emotional responses are associated with "no" answers for these questions). However, an examination of the time course of the activity in this area revealed that the differences in activity in this region probably occurred after the decisions were made. Thus, we interpret this activity as a reactive effect, an emotional backlash to the subject's approving judgment of a personal moral violation. (After all, how would you feel if you just decided that it would be okay to smother your own baby?)
The above analysis was performed at the level of individual trials, but we can also perform a similar analysis at the level of individual subjects. Individual subjects can be characterized along a continuous "utilitarian" -"Kantian" dimension depending on how often and how quickly they are willing or unwilling to sacrifice an individual's welfare in the name of the greater good. We have found that the level of neural activity in the precuneus correlates positively with Kantian behavioral tendencies. In contrast, the level of neural activity in the right anterior dorsolateral prefrontal cortex correlates positively with utilitarian behavioral tendencies. These effects are even stronger if the analyses are restricted to the most Kantian subjects for the precuneus and the most utilitarian subjects for the right anterior dorsolateral prefrontal cortex. In other words, if you're a Kantian (i.e. someone who tends to reach Kantian conclusions, not necessarily someone who reasons as Kantians recommend) then your precuneus activity reflects just how Kantian you are. Likewise, for the right anterior dorsolateral prefrontal cortex if you're a utilitarian. Together, the levels of activity in these two brain areas account for about a third of the variance in people's overall Kantian-utilitarian tendencies.

The above results, taken together, provide strong support for the model sketched above according to which moral decisions are produced through an interaction between emotional and "cognitive" processes subserved by anatomically dissociable brain systems. Another recent brain imaging experiment further supports this model of moral judgment. Alan Sanfey, Jim Rilling, and colleagues (Sanfey, et al., 2003) conducted a brain imaging study of the Ultimatum Game in order to study the neural bases of people's sense of fairness. The Ultimatum Game works as follows: There is a sum of money, say $10, and the first player (the proposer) makes a proposal as to how to divide it up between herself and the other player. The second player, the responder, can either accept the offer, in which case the money is divided as proposed, or reject the offer, in which case no one gets anything.

When both players are perfectly rational, purely motivated by financial self-interest, and these facts are known to the proposer, the outcome of the game is guaranteed. Because something is better than nothing, a rationally and financially self-interested responder will accept any offer. A rationally and financially self-interested proposer who knows this will therefore offer the responder as small a share of the total as possible, and the thus the proposer will get nearly all and the responder will get nearly none. This, however, is not what usually happens when people play the game, even when both players know that the game will only be played once. Proposers usually make offers that are fair (i.e. fifty-fifty split) or close
to fair, and responders tend to reject offers that are more than a little unfair. Why does this happen?

The answer, once again, implicates emotion. This study reveals that unfair offers, as compared to fair offers, produce increased activity in the anterior insula, the region mentioned above that is associated with anger, disgust, and autonomic arousal. Moreover, individuals' average levels of insula activity correlated positively with the percentage of offers they rejected and was weaker for trials in which the subject believed that the unfair offer was made by a computer program. But the insula is only part of the story. The anterior cingulate (the region mentioned above that is associated with response conflict) and the dorsolateral prefrontal cortex (one of the regions mentioned above that is associated with "higher cognition") were also more active in response to unfair offers. Moreover, for trials in which the unfair offer was rejected, the level of activity in the insula tended to be higher than the level of activity in the dorsolateral prefrontal cortex, while the reverse was true of trials in which unfair offers were rejected.

These results dovetail nicely with the imaging experiments of hypothetical moral dilemmas described above. In both studies, the insula subserves an emotional response to an action that is naturally seen as unfair. (In my study the insula responds to the subject's own decision to approve of a personal moral violation, whereas here the subject and her insula are reacting to another person's decision to allocate resources unfairly.) In both studies there is a "cognitive" rationale for not acting on the basis of one's emotions. In response to crying baby, for example, one recognizes that putting one's parental instincts aside and smothering the baby will produce the best overall consequences, whereas in the Ultimatum Game one recognizes that putting one's righteous indignation aside and accepting an unfair offer will make oneself more money. These instances of "cognitive overriding" appear to be subserved by regions in the dorsolateral prefrontal cortex. Finally, according to this model, both unfair offers and difficult moral dilemmas elicit competing emotional and "cognitive" representations, as indicated by the activation of the anterior cingulate cortex in both cases.

Other neuroimaging results have shed light on the neural bases of moral judgment. Jorge Moll and colleagues have conducted two experiments using simple, morally significant sentences (e.g. "They hung and innocent.") (Moll, et al., 2001; Moll, et al., 2002a) and an experiment using morally significant pictures (e.g. pictures of poor abandoned children) (Moll, et al., 2002b). These studies along with the ones described above implicate a wide range of brain areas in the processing of morally significant stimuli, with a fair amount of agreement (given the variety of tasks employed in these studies) concerning which brain
areas are the most important. In addition, many of the brain regions implicated by this handful of neuroimaging studies of moral cognition overlap with those implicated in neuroimaging studies of "theory of mind," the ability to represent others' mental states (Frith, 2001). (For a more detailed account of the neuroanatomy of moral judgment and its relation to related processes see Greene and Haidt (Greene and Haidt, 2002).) While many big questions remain unanswered, it is clear from these studies that there is no "moral center" in the brain, no "morality module." Moreover, moral judgment does not appear to be a function of "higher cognition," with a few emotional perturbations thrown in (Kohlberg, 1969). Nor do moral judgments appear to be driven entirely (or even almost entirely) by emotional responses (Haidt, 2001). Rather, moral judgments appear to be produced by a complex network of brain areas subserving both emotional and "cognitive" processes (Greene and Haidt, 2002; Greene, et al., 2001; Sanfey, et al., 2003).

4 What in moral psychology is innate?

In extracting from the above discussion provisional answers to this question, it will be useful to distinguish between the form and content of moral thought. The form of moral thought concerns the nature of the cognitive processes that subserve moral thinking, which will surely be a function of the cognitive structures that are in place to carry out those processes. The content of moral thought concerns the nature of people's moral beliefs and attitudes, what they think of as right or wrong, good or bad, etc.. Thus, it could turn out that all humans have an innate tendency to think about right and wrong in a certain way without any tendency to agree on which things are right or wrong. With this distinction in mind, let us review the data presented above.

A number of themes emerge from studies of (1) patients with social behavioral problems stemming from brain injury, (2) psychopaths, and (3) the neural bases of moral judgment in normal individuals. Popular conceptions of moral psychology, bolstered by the legend of Phineas Gage and popular portrayals of psychopaths, encourage the belief that there must be a "moral center" in the brain. This does not appear to be the case. The lesion patients discussed above, both developmental and adult-onset, all have deficits that extend beyond the moral domain, as do the psychopaths that have been studied. Moreover, the results of brain imaging studies of moral judgment reveal that moral decision-making involves a diverse network of neural structures that are implicated in a wide range of other phenomena. Nevertheless, the dissociations observed in pathological cases and in the moral thinking of normal individuals are telling. Most importantly, multiple sources of evidence point toward
the existence of at least two relatively independent systems that contribute to moral judgment: (1) an affective system that (a) has its roots in primate social emotion and behavior; (b) is selectively damaged in psychopaths and certain patients with frontal brain lesions; and (c) is selectively triggered by personal moral violations, perceived unfairness, and, more generally, socially significant behaviors that existed in our ancestral environment. (2) a "cognitive" system that (a) is far more developed in humans than in other animals; (b) is selectively preserved in the aforementioned lesion patients and psychopaths; and (c) is not triggered in a stereotyped way by social stimuli. I have called these two different "systems," but they themselves are almost certainly composed of more specific subsystems. In the case of the affective system, its subsystems are probably rather domain-specific, while the system that is responsible for “higher cognition,” though composed of subsystems with specific cognitive functions, is more flexible and more domain-general than the affective system and its subcomponents. Mixed in with what I've called the affective system are likely to be cognitive structures specifically dedicated to representing the mental states of others ("theory of mind") (Greene and Haidt, 2002).

What does this mean for the innateness of moral thought? It seems that the form of moral thought is highly dependent on the large-scale structure of the human mind. Cognitive neuroscience has made it increasingly clear that the mind/brain is composed of a set of interconnected modules. Modularity is generally associated with nativism, but some maintain that learning can give rise to modular structure, and in some cases this is certainly true (Elman et al., 1996; Shiffrin and Schneider, 1977). My opinion, however, is that large scale modular structure is unlikely to be produced without a great deal of specific biological adaptation to that end. Insofar as that is correct, the form of human moral thought is to a very great extent shaped by how the human mind happens to have evolved. In other words, our moral thinking is not the result of writing moral rules on a blank slate and then applying them. As the stark contrast between the trolley and footbridge problem suggests, our moral judgment is greatly affected by the quirks in our cognitive design.

As for the content of human morality, there are good reasons to think that genes play an important role here as well. Many of our most basic pro-social tendencies are exhibited in other species such as the chimpanzee, suggesting that such tendencies stem from shared genes (Flack and de Waal, 2000). Moreover, insofar as one can take modularity as evidence for innate structure, the fact that psychopaths exhibit relatively normal cognitive function along side dramatic deficits in emotional empathy suggests that normal empathic responses may depend on something like an innate “empathy module.” (See also Tooby and Cosmides
on innate motivation (Tooby and Cosmides, this volume). Finally, the fact that psychopathic tendencies, unlike ordinary violent tendencies, appear to be unaffected by differences in parenting strategy (Wootton, et al., 1997) and socioeconomic status (Hare, et al., 1991) suggests that psychopathy may result from compromised genes.

So far I've argued that the form of human moral thought is importantly shaped by the innate structure of the human mind and that some basic, pro-social tendencies probably provide human morality with innate content. What about more ambitious versions of moral nativism? Might there be detailed moral knowledge written into the brain? People seem to "know" intuitively that it's okay to hit the switch in the trolley case and that it's not okay to push the man in the footbridge case. Moreover, they seem to know these things without knowing how they know them, i.e. without any access to organizing principles. Such mysterious nuggets of apparent moral wisdom encourage the thought that somewhere, deep in our cognitive architecture, we're going to find the mother lode: an innate "moral grammar" (Harman, 2000; Rawls, 1971; Stich, 1993). (Or, more accurately, an innate "moral language" since such rules would have content as well as form.)

Despite an earlier comment of mine (Greene, et al., 2001), I have my doubts about this possibility. I believe that the trolley and footbridge cases create the illusion of detailed, implicit moral knowledge by exploiting a large-scale dissociation in our cognitive architecture. We recoil at the thought of pushing the man off the footbridge, but not at that of hitting the switch, because we're adapted to respond preferentially and emotionally to good-old-fashioned interpersonal violence, and not because we have a detailed set of moral rules written into our brains, one of which tells us when exactly it's okay to sacrifice one life to save five. (For a complementary account see Nichols (Nichols, this volume).)

As noted above, I believe that the question of nativism in moral psychology grips many people because our moral thought is at once highly familiar and thoroughly alien. Our moral convictions are central to our humanity and integral to our lives, and yet their origins are obscure, leading people to attribute them to supernatural forces, or their more naturalistic equivalents. For some, it seems, the idea of innate morality holds the promise of validation. Our moral convictions, far from being the internalization of rules that we invented and taught one another, would be a gift from a universe wiser than ourselves. I believe that there is much wisdom in our moral instincts, but they, like everything else nature hands us, have their quirks and their flaws. Those who seek redemption in the study of moral psychology are bound to be disappointed, but there are, I think, enough rewards on the horizon to make it worth the trouble.
Acknowledgements

Thanks to Andrea Heberlein for many helpful suggestions.

References

Bechara, A., Tranel, D., Damasio, H. and Damasio, A. R. (1996). Failure to respond autonimically to anticipated future outcomes following damage to prefrontal cortex. Cereb Cortex, 62.

Blair, R. J. (2001). Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J Neurol Neurosurg Psychiatry, 716.

Damasio, A. R., Tranel, D. and Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomously to social stimuli. *Behav Brain Res, 412.*

Hare, R. D. and Quinn, M. J. (1971). Psychopathy and autonomic conditioning. *Journal of Abnormal Psychology, 77*

Nichols, S. (this volume). Innateness and moral psychology. In (Eds.),

Raine, A., Meloy, J. R., Bihrlle, S., Stoddard, J., LaCasse, L. and Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using

